Q.No.	Sub. Sec.	Question Description	Marks
1.		Expand $f(x,y) = e^x \sin y$ in Taylor Series about $\left(1, \frac{\pi}{2}\right)$ up to third degree terms and hence find the approximate value of $e^{0.5} \sin\left(\frac{\pi+2}{2}\right)$.	[10]
2.		Find the absolute extrema of $z = 2x^2 + y - 3xy$ in the plane region D bounded by the lines $y = 1 - x$, $y = 1 + x$, $y = -1 - x$ and $y = -1 + x$.	[10]
3		Sketch the region of integration and evaluate $\int_{0}^{3} \int_{4y/3}^{\sqrt{(25-y^2)}} x dx dy$ after changing the order of integration.	[10]
4. [Using spherical coordinates, evaluate $\iiint_E (x^2 + y^2) dv$ where E lies between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 9$.	[7]
[1]	5] F	Evaluate $\iiint\limits_R (x-y-z) dx dy dz$, where $R: 1 \le x \le 2; 2 \le y \le 3; 1 \le z \le 3$.	[3]
5. [a	ı] I	If n is positive integer and $m > -1$, then prove that $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$	[5]
լ) [c	Using Beta and Gamma function, evaluate $\int_{0}^{a} y^{4} \sqrt{a^{2} - y^{2}} dy.$	[5]

Answer all the Questions

1.	 (i) Find all critical points of the function f(x,y) = x⁴ + y⁴ - 2x² - 2y² + 4xy and check whether the function attains maximum or minimum at each of these points. (ii) Show that point (0,0) is neither a point of local minimum nor a point of local maximum for the function given by f(x,y) = 3x⁴ - 4x²y + y² for (x,y) ∈ R². 	10	
2.	 (i) If x, y and z are positive real numbers, then find the minimum value of function x²+8y²+27z², where 1/x + 1/y + 1/z = 1. (ii) Find the Taylor series expansion of f(x,y) = sin xy + x²y + ex in the power of (x - 1) and (y - π) up to second degree terms. 	10	

3.	4 .	(i) Find the value of integral by using the polar coordinates.	
	A.	$I = \iint_{D} \sqrt{x^{2} + y^{2}} dy dx \text{where } D = \{(x, y) \in \mathbb{R}^{2} : x \le x^{2} + y^{2} \le 2x\}$	10
		(ii) Find the value of integral by changing the order of integration	10
		$I = \int_0^4 \int_{(4-x)^{\frac{1}{2}}}^2 e^{y^3} dy dx$	
4.		Using multiple integrals, find the volume of the solid region bounded above by hemisphere $z = 1 + \sqrt{1 - x^2 - y^2}$ and bounded below by the cone $z = \sqrt{x^2 + y^2}$.	10
5.		Solve the following integrals by using Beta and Gamma Function: (i) $I = \int_{0}^{\infty} \frac{e^{-\frac{k}{x^{2}}}}{x^{6}} dx$ where $k \neq 0$ (ii) $I = \int_{0}^{1} x^{4} \sqrt{1 - x^{2}} dx$	10

Continuous Assessment Test (CAT)-11- December 2022

Programme	1	B.Tech.	Semester :	Fall Semester Year 1 2022-2023
Course Title		: Calculus	Code :	BMAT101L
course time		Calculus	Slot :	E2+TE2
Faculty		Dr. Berin Greeni A., Dr. Prosenjit Paul, Dr. Srutha Keerthi B, Dr. Dhivya P, Dr. Saurabh Chandra Maury, Dr. Karan Kumar Pradhan	Class No. :	CH2022231700201, 197, 199, 202, 198, 200
Duration	1:	1 ½ Hours	Max. Marks :	50

Answer all the Questions (50 marks)

Q. No. Question Description Mark (a) Find the Taylor series expansion of x^y about (1, 1) up to second degree terms. (b) Obtain the critical points of $(x^2 + 3y^2)e^{-(x^2 + y^2)}$. A wire of length L is cut into two parts (not necessarily equal) which are bent to in the form of a square and a circle respectively. Find the least value of the sum of areas so found. [10] If $f(x,y) = (x^2 + y^2)$ represents the population density of a planar region on the Earth, where x and y are measured in miles, find the number of people in the region shown below.		Auswer all the Questions (50 marks)	
(b) Obtain the critical points of $(x^2 + 3y^2)e^{-(x^2+y^2)}$. [5+5] A wire of length L is cut into two parts (not necessarily equal) which are bent to in the form of a square and a circle respectively. Find the least value of the sum of areas so found. [10] If $f(x,y) = (x^2 + y^2)$ represents the population density of a planar region on the Earth, where x and y are measured in miles, find the number of people in the region shown below.	Q. No.	Question Description	Marks
square and a circle respectively. Find the least value of the sum of areas so found. If $f(x,y) = (x^2 + y^2)$ represents the population density of a planar region on the Earth, where x and y are measured in miles, find the number of people in the region shown below.)/\	(a) Find the Taylor series expansion of x^y about $(1, 1)$ up to second degree terms. (b) Obtain the critical points of $(x^2 + 3y^2)e^{-(x^2+y^2)}$.	[5+5]
x and y are measured in miles, find the number of people in the region shown below. $y = -x$ $y = x$ [10]	2.	A wire of length L is cut into two parts (not necessarily equal) which are bent to in the form of a square and a circle respectively. Find the least value of the sum of areas so found.	[10]
	78.	x and y are measured in miles, find the number of people in the region shown below.	[10]

Evaluate $\iiint_R (x^2 + y^2 + z^2) dV$, where R is the region above the xy-plane bounded by the cone $z^2 = 3(x^2 + y^2)$ and by the sphere $x^2 + y^2 + z^2 = 1$.

5. Using special functions compute the integral $\iint_R x^2 y^2 dx dy$, where R is the region bounded by the curve $x^{2/3} + y^{2/3} - 4 = 0$.

Continuous Assessment Test (CAT)- II- December, 2022

ogramme	:	B.Tech.		: Fall Semester I 2022-2023
	+			: BMAT101L
ourse Title	;	Calculus	Slot	: E1+TE1
aculty		Dr. Saroj Kumar Dash, Dr. Manivannan A, Dr. C. Rajivganthi, Dr. Harshavarthini, Dr. Paranjik, Dr. Ashis Bera, Dr. Ankit Kumar, Dr. Sandip Saha, Dr. Kriti Arya	24	: CH202223170 189, 191, 192, 194, 257, 323,
uration		1 1/2 Hours	Max. Marks	: 50

Answer all the Questions (50 marks)

O.No.	Question Description	Marks
1.	A space probe in the shape of the ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters Earth's atmosphere and its surface begins to heat. After 1 hour, the temperature at the point (x, y, z) on the probe's surface is $T = 8x^2 + 4yz - 16z + 600$. Find the hottest point are the probe's	[10]
2.	Find the absolute maximum and minimum of $f(x, y) = x + y - xy$ on the triangle ABC with vertices A (0.50), B(50.0) and C(-50,-50).	[10]
3.	a) Change the order of integration, evaluate $\int_0^2 \int_0^{9-x^2} x dy dx$.	[7]
	b) Find the area of $r = \sin \theta$ in polar coordinates.	[3]
4.	A spherical tank of radius 3 meters is filled with water to a height of 2 meters. Find the volume of the water using the cylindrical coordinates.	[10]
	14.00 (2.98)	[5]
5.	a) Evaluate $\int_0^\infty \sqrt{x} \ e^{-x^5} \ dx$. b) Evaluate $\int_0^1 x^7 (1-x^2)^6 dx$.	[5]

800

Continuous Assessment Test (CAT)- II- December 2022

Programme	: B.Tech.	Semester	: Fall 2022-2023
Course Title	: Calculus	Code	: BMAT101L
		Slot	: A2+TA2
Faculty	: Dr. Balamurugan, Dr. Saroj Kumar Dash, Dr. Mini Ghosh, Dr. Manimaran, Dr. Sowndarrajan, Dr. Prabhakar, Dr. Rajesh Kumar, Dr. Soumendu Roy	Class ID	: CH2022231700410, 416,429,440,443,57 3,604,610
Duration	: 1 1/2 Hours	Max. Marks	and the same of th

Answer all the Questions (50 marks)

Q.No.	, and the second property of	Marks
	(a). Find the absolute maximum and minimum values of $f(x, y)$ on the region R where $f(x, y) = x^2 + xy + y^2 - 3x + 3y$ and R is the triangular region cut from the first quadrant by the line $x + y = 4$.	[5]
	(b). For what values of the constant k does the second derivative test guarantee that $f(x,y) = x^2 + kxy + y^2$ will have a saddle point at $(0,0)$? A local minimum at $(0,0)$? For what values of k is the second derivative test inconclusive? Give reasons of your results.	[5]
2. 🝾	(a). Find three positive numbers whose sum is 50 and whose product is maximum.	[5]
	(b). A flat circular plate has the shape of the region $x^2 + y^2 \le 4$. The plate, including the boundary where $x^2 + y^2 = 4$, is heated so that the temperature at the point (x, y) is $T(x, y) = x^2 + 2y^2 - x$. Find the temperatures at the hottest and coldest points on the plate.	[5]
3.	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{e^y}{(1+e^y)\sqrt{1-x^2-y^2}} dy dx$.	[10]
14/	Find the volume of the solid bounded by the xy -plane, the paraboloid $2z = x^2 + y^2$ and cylinder $x^2 + y^2 = 4$.	[10]
5.	(a). Find the value of $\int_0^{\pi} \sin^2 x (1 + \cos x)^4 dx$ in terms of gamma function.	[5]
	(b). Evaluate the integral $\int_0^\infty x^4 e^{(-x^8)} dx$.	[5]

Continuous Assessment Test II - December 2022

Programme	: B.Tech	Semester	:	FALLSEM 2022-23
	Colombia	Code	:	BMAT1011
Course	Calculus	Slot	i:	A1+TA1
Faculty	: Dr. S. Radha	· Class Number	:	CH2022231700297
	Dr. N. Nathiya			CH2022231700423
	Dr. Sowndarrajan P T	9		CH2022231700424
	Dr. Manoj Kumar Singh			CH2022231700298
	Dr. Harshavarthini Shanmugam			CH2022231700617
	Dr. Manimaran J			CH2022231700608
Time	: 1½ hours	Max. Marks	:	50

	Answer ALL the Questions ($5 \times 10 = 50$ marks)		
Q.No. Sec	Question Description		
1. 9.	Find the critical points of the function $f(x, y) = x^3 + y^3 - 12x - 6y + 40$. Test each of these for maximum and minimum.	5	
کو طر	Use Taylor's formula to find a quadratic approximation of $f(x, y) = xe^y + 1$ at $(1, 4)$.	5	
12	The temperature T at any point (x, y, z) in space is $T = 625xzy^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.	10	
35	Find the volume of the region using double integration which lies under the paraboloid $z = 4 - x^2 - y^2$ and above the disk $(x - 1)^2 + y^2 = 1$ on the xy-plane.	10	
4/	Evaluate $\iiint e^{-x^2-z^2} dV$ where R is the region between the two cylinders $x^2+z^2=4$ and $x^2+z^2=9$ with $1 \le y \le 5$ and $z \le 0$.	10	
	Evaluate $\int_0^1 x^{\frac{7}{2}} \left(1 - x^{\frac{3}{2}}\right)^{11} dx$.	5	
/b.	Evaluate $I = \int_0^\infty x^4 e^{-x^4} dx$.	5	