

Name of Examination		Continuous Assessment Test - 1, Fall Semester 2023-24, (Sept. 2023)					
Slot: B1+TB1		Course Mode: Classroom Based			Class Number(s): CH2023241700733		
Course Code:	BCHY101L		Course Title:	Engineering Chemistry			
Emp. No.:	52805		Faculty Name:	Dr. Lak	koji Satish	School: SAS	
Contact No.:	889544	6990	Email:	lakkoji.s	atish@vit.ac.in		

Answer Any FIVE Questions Total Marks: 5 X 10 Marks = 50

Q. No.	Question Text	Marks			
1.	 (a) 2 moles of an ideal monoatomic gas (C_V=3/2R) at 30°C expand adiabatically from 20 dm³ to 50 dm³. Calculate the values of q, w, ΔU and ΔH. Given, R = 8.314 Jmol⁻¹K⁻¹. (5M) (b) Identify if the heat exchanged (q), work done (W) and internal energy (U) and enthalpy (H) are state functions or path Functions. 				
	Calculate the efficiency of a heat engine if it operates between 25°C and 125°C. (5M)				
2.	 (a) Which of the following processes will have △S > 0? Justify your answer. (i) Isothermal reversible expansion of an ideal gas. (ii) Adiabatic reversible expansion of an ideal gas. (5M) 	10			
	(b) Decomposition of SO ₂ Cl ₂ follows a first order kinetics. 50% of that reaction completes in 100 minutes. How long will it take for 90% of the reaction to be completed? (5M)				
	(a) What is a catalyst? Explain homogeneous and heterogeneous catalysis with an example of each type. (5M)	10			
t	(b) The values of rate constants for a reaction are 10×10^{-4} L/mol.s and 10×10^{-2} L/mol.s at remperatures 300K and 400 K respectively. Calculate the activation energy of the reaction. (R=8.314JK ⁻¹ mol ⁻¹). (5M)				
]	(a) Applying VB theory explain the hybridization, geometry and magnetic behavior of FeF ₆] ⁴⁻ and [Fe(CN) ₆] ⁴⁻ (At. No. of Fe= 26). (5M) (b) With proper example describe the role of coordination complexes in (i) metal extraction and (ii) metal purification process. (5M)	10			
5. (a	 a) Draw the crystal filed splitting diagram for low spin and high spin complexes with d⁶ configuration in octahedral field. Calculate CFSE and spin only magnetic moment in each case. (5M) b) Identify the compounds which will have higher extent of d orbital splitting in each of the following set. Justify your choice. Set 1: [CoF₆]³ & [Co(CN)₆]³. 	10			
(A	Set 2: $[Fe(NH_3)_6]^{3+}$ & $[Ru(NH_3)_6]^{3+}$ Atomic Number of Co: 27, Fe:26, Ru:44). (5M)				
5. (a	a) Applying 18 electron rule predict the thermodynamic stability of the following organometallic complexes. (At. No. of Co=27; At. No. of Mn=25) 5M)	10			
	(i) (η ⁵ -C ₅ H ₅) ₂ Co (ii) Mn(CO) ₅				
(1	b) Explain in detail how the presence of Magnesium metal ion in chlorophyll favors the utilization of light energy in photosynthesis. (5M)				